Method function to perform sequential likelihood ratio tests for Negative Binomial generalized linear models.

# S3 method for negbin
anova(object, ..., test = "Chisq")

Arguments

object

Fitted model object of class "negbin", inheriting from classes "glm" and "lm", specifying a Negative Binomial fitted GLM. Typically the output of glm.nb().

...

Zero or more additional fitted model objects of class "negbin". They should form a nested sequence of models, but need not be specified in any particular order.

test

Argument to match the test argument of anova.glm. Ignored (with a warning if changed) if a sequence of two or more Negative Binomial fitted model objects is specified, but possibly used if only one object is specified.

Note

If only one fitted model object is specified, a sequential analysis of deviance table is given for the fitted model. The theta parameter is kept fixed. If more than one fitted model object is specified they must all be of class "negbin" and likelihood ratio tests are done of each model within the next. In this case theta is assumed to have been re-estimated for each model.

Details

This function is a method for the generic function anova() for class "negbin". It can be invoked by calling anova(x) for an object x of the appropriate class, or directly by calling anova.negbin(x) regardless of the class of the object.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See also

Examples

m1 <- glm.nb(Days ~ Eth*Age*Lrn*Sex, quine, link = log) m2 <- update(m1, . ~ . - Eth:Age:Lrn:Sex) anova(m2, m1)
#> Likelihood ratio tests of Negative Binomial Models #> #> Response: Days #> Model #> 1 Eth + Age + Lrn + Sex + Eth:Age + Eth:Lrn + Age:Lrn + Eth:Sex + Age:Sex + Lrn:Sex + Eth:Age:Lrn + Eth:Age:Sex + Eth:Lrn:Sex + Age:Lrn:Sex #> 2 Eth * Age * Lrn * Sex #> theta Resid. df 2 x log-lik. Test df LR stat. Pr(Chi) #> 1 1.90799 120 -1040.728 #> 2 1.92836 118 -1039.324 1 vs 2 2 1.403843 0.4956319
anova(m2)
#> Warning: tests made without re-estimating 'theta'
#> Analysis of Deviance Table #> #> Model: Negative Binomial(1.908), link: log #> #> Response: Days #> #> Terms added sequentially (first to last) #> #> #> Df Deviance Resid. Df Resid. Dev Pr(>Chi) #> NULL 145 270.03 #> Eth 1 19.0989 144 250.93 1.241e-05 *** #> Age 3 16.3483 141 234.58 0.000962 *** #> Lrn 1 3.5449 140 231.04 0.059730 . #> Sex 1 0.3989 139 230.64 0.527666 #> Eth:Age 3 14.6030 136 216.03 0.002189 ** #> Eth:Lrn 1 0.0447 135 215.99 0.832601 #> Age:Lrn 2 1.7482 133 214.24 0.417240 #> Eth:Sex 1 1.1470 132 213.09 0.284183 #> Age:Sex 3 21.9746 129 191.12 6.603e-05 *** #> Lrn:Sex 1 0.0277 128 191.09 0.867712 #> Eth:Age:Lrn 2 9.0099 126 182.08 0.011054 * #> Eth:Age:Sex 3 4.8218 123 177.26 0.185319 #> Eth:Lrn:Sex 1 3.3160 122 173.94 0.068608 . #> Age:Lrn:Sex 2 6.3941 120 167.55 0.040882 * #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1