confint.Rd
Computes confidence intervals for one or more parameters in a fitted
model. Package MASS adds methods for glm
and nls
fits.
# S3 method for glm confint(object, parm, level = 0.95, trace = FALSE, ...) # S3 method for nls confint(object, parm, level = 0.95, ...)
object | a fitted model object. Methods currently exist for the classes
|
---|---|
parm | a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level | the confidence level required. |
trace | logical. Should profiling be traced? |
... | additional argument(s) for methods. |
A matrix (or vector) with columns giving lower and upper confidence limits for each parameter. These will be labelled as (1 - level)/2 and 1 - (1 - level)/2 in % (by default 2.5% and 97.5%).
confint
is a generic function in package stats
.
These confint
methods call the appropriate profile method,
then find the confidence intervals by interpolation in the profile
traces. If the profile object is already available it should be used
as the main argument rather than the fitted model object itself.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
expn1 <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"), function(b0, b1, th, x) {}) wtloss.gr <- nls(Weight ~ expn1(b0, b1, th, Days), data = wtloss, start = c(b0=90, b1=95, th=120)) expn2 <- deriv(~b0 + b1*((w0 - b0)/b1)^(x/d0), c("b0","b1","d0"), function(b0, b1, d0, x, w0) {}) wtloss.init <- function(obj, w0) { p <- coef(obj) d0 <- - log((w0 - p["b0"])/p["b1"])/log(2) * p["th"] c(p[c("b0", "b1")], d0 = as.vector(d0)) } out <- NULL w0s <- c(110, 100, 90) for(w0 in w0s) { fm <- nls(Weight ~ expn2(b0, b1, d0, Days, w0), wtloss, start = wtloss.init(wtloss.gr, w0)) out <- rbind(out, c(coef(fm)["d0"], confint(fm, "d0"))) }#>#>#>#> d0 low high #> 110 kg: 261.5132 256.2303 267.5009 #> 100 kg: 349.4979 334.7293 368.0151 #> 90 kg: 507.0941 457.2637 594.8745ldose <- rep(0:5, 2) numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16) sex <- factor(rep(c("M", "F"), c(6, 6))) SF <- cbind(numdead, numalive = 20 - numdead) budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial) confint(budworm.lg0)#>#> 2.5 % 97.5 % #> sexF -4.4581438 -2.613610 #> sexM -3.1728745 -1.655117 #> ldose 0.8228708 1.339058#>#> 2.5 % 97.5 % #> 0.8228708 1.3390581