The motors data frame has 40 rows and 3 columns. It describes an accelerated life test at each of four temperatures of 10 motorettes, and has rather discrete times.

motors

Format

This data frame contains the following columns:

temp

the temperature (degrees C) of the test.

time

the time in hours to failure or censoring at 8064 hours (= 336 days).

cens

an indicator variable for death.

Source

Kalbfleisch, J. D. and Prentice, R. L. (1980) The Statistical Analysis of Failure Time Data. New York: Wiley.

taken from

Nelson, W. D. and Hahn, G. J. (1972) Linear regression of a regression relationship from censored data. Part 1 -- simple methods and their application. Technometrics, 14, 247--276.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

library(survival) plot(survfit(Surv(time, cens) ~ factor(temp), motors), conf.int = FALSE)
# fit Weibull model motor.wei <- survreg(Surv(time, cens) ~ temp, motors) summary(motor.wei)
#> #> Call: #> survreg(formula = Surv(time, cens) ~ temp, data = motors) #> Value Std. Error z p #> (Intercept) 16.31852 0.62296 26.2 < 2e-16 #> temp -0.04531 0.00319 -14.2 < 2e-16 #> Log(scale) -1.09564 0.21480 -5.1 3.4e-07 #> #> Scale= 0.334 #> #> Weibull distribution #> Loglik(model)= -147.4 Loglik(intercept only)= -169.5 #> Chisq= 44.32 on 1 degrees of freedom, p= 2.8e-11 #> Number of Newton-Raphson Iterations: 7 #> n= 40 #>
# and predict at 130C unlist(predict(motor.wei, data.frame(temp=130), se.fit = TRUE))
#> fit.1 se.fit.1 #> 33813.06 7506.36
motor.cox <- coxph(Surv(time, cens) ~ temp, motors) summary(motor.cox)
#> Call: #> coxph(formula = Surv(time, cens) ~ temp, data = motors) #> #> n= 40, number of events= 17 #> #> coef exp(coef) se(coef) z Pr(>|z|) #> temp 0.09185 1.09620 0.02736 3.358 0.000786 *** #> --- #> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 #> #> exp(coef) exp(-coef) lower .95 upper .95 #> temp 1.096 0.9122 1.039 1.157 #> #> Concordance= 0.84 (se = 0.035 ) #> Likelihood ratio test= 25.56 on 1 df, p=4e-07 #> Wald test = 11.27 on 1 df, p=8e-04 #> Score (logrank) test = 22.73 on 1 df, p=2e-06 #>
# predict at temperature 200 plot(survfit(motor.cox, newdata = data.frame(temp=200), conf.type = "log-log"))
summary( survfit(motor.cox, newdata = data.frame(temp=130)) )
#> Call: survfit(formula = motor.cox, newdata = data.frame(temp = 130)) #> #> time n.risk n.event survival std.err lower 95% CI upper 95% CI #> 408 40 4 1.000 0.000254 0.999 1 #> 504 36 3 1.000 0.000498 0.999 1 #> 1344 28 2 0.999 0.001910 0.995 1 #> 1440 26 1 0.998 0.002697 0.993 1 #> 1764 20 1 0.996 0.005325 0.986 1 #> 2772 19 1 0.994 0.007920 0.978 1 #> 3444 18 1 0.991 0.010673 0.971 1 #> 3542 17 1 0.988 0.013667 0.962 1 #> 3780 16 1 0.985 0.016976 0.952 1 #> 4860 15 1 0.981 0.020692 0.941 1 #> 5196 14 1 0.977 0.024941 0.929 1