Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for loess augment(x, data = stats::model.frame(x), newdata, ...)
x | A |
---|---|
data | A |
newdata | A |
... | Arguments passed on to
|
When newdata
is not supplied augment.loess
returns one row for each observation with three columns added
to the original data:
Fitted values of model
Standard errors of the fitted values
Residuals of the fitted values
Fitted values of model
Standard errors of the fitted values
When the modeling was performed with na.action = "na.omit"
(as is the typical default), rows with NA in the initial data are omitted
entirely from the augmented data frame. When the modeling was performed
with na.action = "na.exclude"
, one should provide the original data
as a second argument, at which point the augmented data will contain those
rows (typically with NAs in place of the new columns). If the original data
is not provided to augment()
and na.action = "na.exclude"
, a
warning is raised and the incomplete rows are dropped.
#> # A tibble: 32 x 6 #> .rownames mpg wt .fitted .se.fit .resid #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Mazda RX4 21 2.62 22.2 1.01 -1.24 #> 2 Mazda RX4 Wag 21 2.88 21.1 1.07 -0.0786 #> 3 Datsun 710 22.8 2.32 24.6 1.03 -1.84 #> 4 Hornet 4 Drive 21.4 3.22 19.5 0.861 1.91 #> 5 Hornet Sportabout 18.7 3.44 17.9 0.755 0.779 #> 6 Valiant 18.1 3.46 17.8 0.747 0.290 #> 7 Duster 360 14.3 3.57 17.2 0.721 -2.89 #> 8 Merc 240D 24.4 3.19 19.6 0.866 4.78 #> 9 Merc 230 22.8 3.15 19.8 0.868 2.98 #> 10 Merc 280 19.2 3.44 17.9 0.755 1.28 #> # … with 22 more rows#> # A tibble: 32 x 15 #> .rownames mpg cyl disp hp drat wt qsec vs am gear carb #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 2 Mazda RX… 21 6 160 110 3.9 2.88 17.0 0 1 4 4 #> 3 Datsun 7… 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> 4 Hornet 4… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 #> 5 Hornet S… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 #> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 #> 7 Duster 3… 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 #> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 #> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 #> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 #> # … with 22 more rows, and 3 more variables: .fitted <dbl>, .se.fit <dbl>, #> # .resid <dbl>#> # A tibble: 6 x 14 #> .rownames mpg cyl disp hp drat wt qsec vs am gear carb #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 2 Mazda RX… 21 6 160 110 3.9 2.88 17.0 0 1 4 4 #> 3 Datsun 7… 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> 4 Hornet 4… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 #> 5 Hornet S… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 #> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 #> # … with 2 more variables: .fitted <dbl>, .se.fit <dbl>