Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for confusionMatrix tidy(x, by_class = TRUE, ...)
x | An object of class |
---|---|
by_class | Logical indicating whether or not to show performance
measures broken down by class. Defaults to |
... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble with one or more of the following columns:
The name of a statistic from the confusion matrix
Which class the term is a measurement of
The value of the statistic
Low end of 95 percent CI only applicable to accuracy
High end of 95 percent CI only applicable to accuracy
P-value for accuracy and kappa statistics
if (requireNamespace("caret", quietly = TRUE)) { set.seed(27) two_class_sample1 <- as.factor(sample(letters[1:2], 100, TRUE)) two_class_sample2 <- as.factor(sample(letters[1:2], 100, TRUE)) two_class_cm <- caret::confusionMatrix( two_class_sample1, two_class_sample2 ) tidy(two_class_cm) tidy(two_class_cm, by_class = FALSE) # multiclass example six_class_sample1 <- as.factor(sample(letters[1:6], 100, TRUE)) six_class_sample2 <- as.factor(sample(letters[1:6], 100, TRUE)) six_class_cm <- caret::confusionMatrix( six_class_sample1, six_class_sample2 ) tidy(six_class_cm) tidy(six_class_cm, by_class = FALSE) }#> # A tibble: 2 x 5 #> term estimate conf.low conf.high p.value #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 accuracy 0.2 0.127 0.292 0.795 #> 2 kappa 0.0351 NA NA 0.873