Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for factanal tidy(x, ...)
x | A |
---|---|
... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble with one row for each variable used in the analysis and columns:
The variable being estimated in the factor analysis
Proportion of residual, or unexplained variance
Factor loading of term on factor X. There will be as many columns of this format as there were factors fitted.
Other factanal tidiers: augment.factanal
,
glance.factanal
#> # A tibble: 1 x 8 #> n.factors total.variance statistic p.value df n method converged #> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <chr> <lgl> #> 1 3 0.862 30.5 0.205 25 32 mle TRUEtidy(mod)#> # A tibble: 11 x 5 #> variable uniqueness fl1 fl2 fl3 #> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 mpg 0.135 0.643 -0.478 -0.473 #> 2 cyl 0.0555 -0.618 0.703 0.261 #> 3 disp 0.0898 -0.719 0.537 0.323 #> 4 hp 0.127 -0.291 0.725 0.513 #> 5 drat 0.290 0.804 -0.241 -0.0684 #> 6 wt 0.0596 -0.778 0.248 0.524 #> 7 qsec 0.0515 -0.177 -0.946 -0.151 #> 8 vs 0.223 0.295 -0.805 -0.204 #> 9 am 0.208 0.880 0.0884 -0.0927 #> 10 gear 0.125 0.908 0.0211 0.224 #> 11 carb 0.158 0.114 0.559 0.719augment(mod)#> # A tibble: 32 x 4 #> .rownames .fs1 .fs2 .fs3 #> <fct> <dbl> <dbl> <dbl> #> 1 Mazda RX4 0.847 0.672 -0.278 #> 2 Mazda RX4 Wag 0.722 0.384 0.0246 #> 3 Datsun 710 0.686 -0.592 -0.564 #> 4 Hornet 4 Drive -0.866 -0.673 -0.767 #> 5 Hornet Sportabout -0.893 0.862 -1.01 #> 6 Valiant -1.06 -1.07 -0.383 #> 7 Duster 360 -0.559 1.24 -0.199 #> 8 Merc 240D 0.0774 -1.50 0.409 #> 9 Merc 230 -0.242 -2.61 1.23 #> 10 Merc 280 0.183 -0.591 0.910 #> # … with 22 more rows#> Warning: Column `.rownames` joining factor and character vector, coercing into character vector#> # A tibble: 32 x 15 #> .rownames mpg cyl disp hp drat wt qsec vs am gear carb #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 2 Mazda RX… 21 6 160 110 3.9 2.88 17.0 0 1 4 4 #> 3 Datsun 7… 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> 4 Hornet 4… 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 #> 5 Hornet S… 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 #> 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 #> 7 Duster 3… 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 #> 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 #> 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 #> 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 #> # … with 22 more rows, and 3 more variables: .fs1 <dbl>, .fs2 <dbl>, .fs3 <dbl>