Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for manova tidy(x, test = "Pillai", ...)
| x | A |
|---|---|
| test | One of "Pillai" (Pillai's trace), "Wilks" (Wilk's lambda), "Hotelling-Lawley" (Hotelling-Lawley trace) or "Roy" (Roy's greatest root) indicating which test statistic should be used. Defaults to "Pillai". |
| ... | Arguments passed on to
|
A tibble::tibble with columns:
\item{term}{Term in design}
\item{statistic}{Approximate F statistic}
\item{num.df}{Degrees of freedom}
\item{p.value}{P-value}
Depending on which test statistic is specified, one of the following columns is also included:
\item{pillai}{Pillai's trace}
\item{wilks}{Wilk's lambda}
\item{hl}{Hotelling-Lawley trace}
\item{roy}{Roy's greatest root}
tidy(), stats::summary.manova()
Other anova tidiers: tidy.TukeyHSD,
tidy.anova, tidy.aovlist,
tidy.aov
npk2 <- within(npk, foo <- rnorm(24)) m <- manova(cbind(yield, foo) ~ block + N * P * K, npk2) tidy(m)#> # A tibble: 8 x 7 #> term df pillai statistic num.df den.df p.value #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 block 5 0.834 1.72 10 24 0.135 #> 2 N 1 0.521 5.98 2 11 0.0175 #> 3 P 1 0.128 0.806 2 11 0.471 #> 4 K 1 0.362 3.13 2 11 0.0842 #> 5 N:P 1 0.193 1.31 2 11 0.308 #> 6 N:K 1 0.208 1.44 2 11 0.278 #> 7 P:K 1 0.00334 0.0184 2 11 0.982 #> 8 Residuals 12 NA NA NA NA NA