Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for poLCA tidy(x, ...)
x | A |
---|---|
... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble with one row per variable-class-outcome combination, with columns:
Manifest variable
Latent class ID, an integer
Outcome of manifest variable
Estimated class-conditional response probability
Standard error of estimated probability
tidy()
, poLCA::poLCA()
Other poLCA tidiers: augment.poLCA
,
glance.poLCA
if (require("poLCA", quietly = TRUE)) { library(poLCA) library(dplyr) data(values) f <- cbind(A, B, C, D)~1 M1 <- poLCA(f, values, nclass = 2, verbose = FALSE) M1 tidy(M1) augment(M1) glance(M1) library(ggplot2) ggplot(tidy(M1), aes(factor(class), estimate, fill = factor(outcome))) + geom_bar(stat = "identity", width = 1) + facet_wrap(~ variable) set.seed(2016) # compare multiple mods <- tibble(nclass = 1:3) %>% group_by(nclass) %>% do(mod = poLCA(f, values, nclass = .$nclass, verbose = FALSE)) # compare log-likelihood and/or AIC, BIC mods %>% glance(mod) ## Three-class model with a single covariate. data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY nes2a <- poLCA(f2a, election, nclass = 3, nrep = 5, verbose = FALSE) td <- tidy(nes2a) td # show ggplot(td, aes(outcome, estimate, color = factor(class), group = class)) + geom_line() + facet_wrap(~ variable, nrow = 2) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) au <- augment(nes2a) au au %>% count(.class) # if the original data is provided, it leads to NAs in new columns # for rows that weren't predicted au2 <- augment(nes2a, data = election) au2 dim(au2) }#> Warning: there is no package called ‘poLCA’