Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

# S3 method for poLCA
tidy(x, ...)

Arguments

x

A poLCA object returned from poLCA::poLCA().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Additionally, if you pass newdata = my_tibble to an augment() method that does not accept a newdata argument, it will use the default value for the data argument.

Value

A tibble::tibble with one row per variable-class-outcome combination, with columns:

variable

Manifest variable

class

Latent class ID, an integer

outcome

Outcome of manifest variable

estimate

Estimated class-conditional response probability

std.error

Standard error of estimated probability

See also

tidy(), poLCA::poLCA()

Other poLCA tidiers: augment.poLCA, glance.poLCA

Examples

if (require("poLCA", quietly = TRUE)) { library(poLCA) library(dplyr) data(values) f <- cbind(A, B, C, D)~1 M1 <- poLCA(f, values, nclass = 2, verbose = FALSE) M1 tidy(M1) augment(M1) glance(M1) library(ggplot2) ggplot(tidy(M1), aes(factor(class), estimate, fill = factor(outcome))) + geom_bar(stat = "identity", width = 1) + facet_wrap(~ variable) set.seed(2016) # compare multiple mods <- tibble(nclass = 1:3) %>% group_by(nclass) %>% do(mod = poLCA(f, values, nclass = .$nclass, verbose = FALSE)) # compare log-likelihood and/or AIC, BIC mods %>% glance(mod) ## Three-class model with a single covariate. data(election) f2a <- cbind(MORALG,CARESG,KNOWG,LEADG,DISHONG,INTELG, MORALB,CARESB,KNOWB,LEADB,DISHONB,INTELB)~PARTY nes2a <- poLCA(f2a, election, nclass = 3, nrep = 5, verbose = FALSE) td <- tidy(nes2a) td # show ggplot(td, aes(outcome, estimate, color = factor(class), group = class)) + geom_line() + facet_wrap(~ variable, nrow = 2) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) au <- augment(nes2a) au au %>% count(.class) # if the original data is provided, it leads to NAs in new columns # for rows that weren't predicted au2 <- augment(nes2a, data = election) au2 dim(au2) }
#> Warning: there is no package called ‘poLCA’