dummyVars creates a full set of dummy variables (i.e. less than full rank parameterization)

dummyVars(formula, ...)

# S3 method for default
dummyVars(formula, data, sep = ".",
  levelsOnly = FALSE, fullRank = FALSE, ...)

# S3 method for dummyVars
print(x, ...)

# S3 method for dummyVars
predict(object, newdata, na.action = na.pass, ...)

contr.ltfr(n, contrasts = TRUE, sparse = FALSE)

class2ind(x, drop2nd = FALSE)

Arguments

formula

An appropriate R model formula, see References

...

additional arguments to be passed to other methods

data

A data frame with the predictors of interest

sep

An optional separator between factor variable names and their levels. Use sep = NULL for no separator (i.e. normal behavior of model.matrix as shown in the Details section)

levelsOnly

A logical; TRUE means to completely remove the variable names from the column names

fullRank

A logical; should a full rank or less than full rank parameterization be used? If TRUE, factors are encoded to be consistent with model.matrix and the resulting there are no linear dependencies induced between the columns.

x

A factor vector.

object

An object of class dummyVars

newdata

A data frame with the required columns

na.action

A function determining what should be done with missing values in newdata. The default is to predict NA.

n

A vector of levels for a factor, or the number of levels.

contrasts

A logical indicating whether contrasts should be computed.

sparse

A logical indicating if the result should be sparse.

drop2nd

A logical: if the factor has two levels, should a single binary vector be returned?

Value

The output of dummyVars is a list of class 'dummyVars' with elements

call

the function call

form

the model formula

vars

names of all the variables in the model

facVars

names of all the factor variables in the model

lvls

levels of any factor variables

sep

NULL or a character separator

terms

the terms.formula object

levelsOnly

a logical

The predict function produces a data frame. class2ind returns a matrix (or a vector if drop2nd = TRUE). contr.ltfr generates a design matrix.

Details

Most of the contrasts functions in R produce full rank parameterizations of the predictor data. For example, contr.treatment creates a reference cell in the data and defines dummy variables for all factor levels except those in the reference cell. For example, if a factor with 5 levels is used in a model formula alone, contr.treatment creates columns for the intercept and all the factor levels except the first level of the factor. For the data in the Example section below, this would produce:

 (Intercept) dayTue dayWed dayThu dayFri daySat daySun
           1      0      0      0      0      0      0
           1      0      0      0      0      0      0
           1      0      0      0      0      0      0
           1      0      1      0      0      0      0
           1      0      1      0      0      0      0
           1      0      0      0      1      0      0
           1      0      0      0      0      1      0
           1      0      0      0      0      1      0
           1      0      0      0      1      0      0

In some situations, there may be a need for dummy variables for all the levels of the factor. For the same example:

 dayMon dayTue dayWed dayThu dayFri daySat daySun
      1      0      0      0      0      0      0
      1      0      0      0      0      0      0
      1      0      0      0      0      0      0
      0      0      1      0      0      0      0
      0      0      1      0      0      0      0
      0      0      0      0      1      0      0
      0      0      0      0      0      1      0
      0      0      0      0      0      1      0
      0      0      0      0      1      0      0

Given a formula and initial data set, the class dummyVars gathers all the information needed to produce a full set of dummy variables for any data set. It uses contr.ltfr as the base function to do this.

class2ind is most useful for converting a factor outcome vector to a matrix (or vector) of dummy variables.

References

https://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models

See also

Examples

when <- data.frame(time = c("afternoon", "night", "afternoon", "morning", "morning", "morning", "morning", "afternoon", "afternoon"), day = c("Mon", "Mon", "Mon", "Wed", "Wed", "Fri", "Sat", "Sat", "Fri")) levels(when$time) <- list(morning="morning", afternoon="afternoon", night="night") levels(when$day) <- list(Mon="Mon", Tue="Tue", Wed="Wed", Thu="Thu", Fri="Fri", Sat="Sat", Sun="Sun") ## Default behavior: model.matrix(~day, when)
#> (Intercept) dayTue dayWed dayThu dayFri daySat daySun #> 1 1 0 0 0 0 0 0 #> 2 1 0 0 0 0 0 0 #> 3 1 0 0 0 0 0 0 #> 4 1 0 1 0 0 0 0 #> 5 1 0 1 0 0 0 0 #> 6 1 0 0 0 1 0 0 #> 7 1 0 0 0 0 1 0 #> 8 1 0 0 0 0 1 0 #> 9 1 0 0 0 1 0 0 #> attr(,"assign") #> [1] 0 1 1 1 1 1 1 #> attr(,"contrasts") #> attr(,"contrasts")$day #> [1] "contr.treatment" #>
mainEffects <- dummyVars(~ day + time, data = when) mainEffects
#> Dummy Variable Object #> #> Formula: ~day + time #> <environment: 0xd5f5238> #> 2 variables, 2 factors #> Variables and levels will be separated by '.' #> A less than full rank encoding is used
predict(mainEffects, when[1:3,])
#> day.Mon day.Tue day.Wed day.Thu day.Fri day.Sat day.Sun time.morning #> 1 1 0 0 0 0 0 0 0 #> 2 1 0 0 0 0 0 0 0 #> 3 1 0 0 0 0 0 0 0 #> time.afternoon time.night #> 1 1 0 #> 2 0 1 #> 3 1 0
when2 <- when when2[1, 1] <- NA predict(mainEffects, when2[1:3,])
#> day.Mon day.Tue day.Wed day.Thu day.Fri day.Sat day.Sun time.morning #> 1 1 0 0 0 0 0 0 NA #> 2 1 0 0 0 0 0 0 0 #> 3 1 0 0 0 0 0 0 0 #> time.afternoon time.night #> 1 NA NA #> 2 0 1 #> 3 1 0
predict(mainEffects, when2[1:3,], na.action = na.omit)
#> day.Mon day.Tue day.Wed day.Thu day.Fri day.Sat day.Sun time.morning #> 2 1 0 0 0 0 0 0 0 #> 3 1 0 0 0 0 0 0 0 #> time.afternoon time.night #> 2 0 1 #> 3 1 0
interactionModel <- dummyVars(~ day + time + day:time, data = when, sep = ".") predict(interactionModel, when[1:3,])
#> day.Mon day.Tue day.Wed day.Thu day.Fri day.Sat day.Sun time.morning #> 1 1 0 0 0 0 0 0 0 #> 2 1 0 0 0 0 0 0 0 #> 3 1 0 0 0 0 0 0 0 #> time.afternoon time.night dayMon:timemorning dayTue:timemorning #> 1 1 0 0 0 #> 2 0 1 0 0 #> 3 1 0 0 0 #> dayWed:timemorning dayThu:timemorning dayFri:timemorning daySat:timemorning #> 1 0 0 0 0 #> 2 0 0 0 0 #> 3 0 0 0 0 #> daySun:timemorning dayMon:timeafternoon dayTue:timeafternoon #> 1 0 1 0 #> 2 0 0 0 #> 3 0 1 0 #> dayWed:timeafternoon dayThu:timeafternoon dayFri:timeafternoon #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> daySat:timeafternoon daySun:timeafternoon dayMon:timenight dayTue:timenight #> 1 0 0 0 0 #> 2 0 0 1 0 #> 3 0 0 0 0 #> dayWed:timenight dayThu:timenight dayFri:timenight daySat:timenight #> 1 0 0 0 0 #> 2 0 0 0 0 #> 3 0 0 0 0 #> daySun:timenight #> 1 0 #> 2 0 #> 3 0
noNames <- dummyVars(~ day + time + day:time, data = when, levelsOnly = TRUE) predict(noNames, when)
#> Mon Tue Wed Thu Fri Sat Sun morning afternoon night dayMon:timemorning #> 1 1 0 0 0 0 0 0 0 1 0 0 #> 2 1 0 0 0 0 0 0 0 0 1 0 #> 3 1 0 0 0 0 0 0 0 1 0 0 #> 4 0 0 1 0 0 0 0 1 0 0 0 #> 5 0 0 1 0 0 0 0 1 0 0 0 #> 6 0 0 0 0 1 0 0 1 0 0 0 #> 7 0 0 0 0 0 1 0 1 0 0 0 #> 8 0 0 0 0 0 1 0 0 1 0 0 #> 9 0 0 0 0 1 0 0 0 1 0 0 #> dayTue:timemorning dayWed:timemorning dayThu:timemorning dayFri:timemorning #> 1 0 0 0 0 #> 2 0 0 0 0 #> 3 0 0 0 0 #> 4 0 1 0 0 #> 5 0 1 0 0 #> 6 0 0 0 1 #> 7 0 0 0 0 #> 8 0 0 0 0 #> 9 0 0 0 0 #> daySat:timemorning daySun:timemorning dayMon:timeafternoon #> 1 0 0 1 #> 2 0 0 0 #> 3 0 0 1 #> 4 0 0 0 #> 5 0 0 0 #> 6 0 0 0 #> 7 1 0 0 #> 8 0 0 0 #> 9 0 0 0 #> dayTue:timeafternoon dayWed:timeafternoon dayThu:timeafternoon #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> 6 0 0 0 #> 7 0 0 0 #> 8 0 0 0 #> 9 0 0 0 #> dayFri:timeafternoon daySat:timeafternoon daySun:timeafternoon #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> 6 0 0 0 #> 7 0 0 0 #> 8 0 1 0 #> 9 1 0 0 #> dayMon:timenight dayTue:timenight dayWed:timenight dayThu:timenight #> 1 0 0 0 0 #> 2 1 0 0 0 #> 3 0 0 0 0 #> 4 0 0 0 0 #> 5 0 0 0 0 #> 6 0 0 0 0 #> 7 0 0 0 0 #> 8 0 0 0 0 #> 9 0 0 0 0 #> dayFri:timenight daySat:timenight daySun:timenight #> 1 0 0 0 #> 2 0 0 0 #> 3 0 0 0 #> 4 0 0 0 #> 5 0 0 0 #> 6 0 0 0 #> 7 0 0 0 #> 8 0 0 0 #> 9 0 0 0
head(class2ind(iris$Species))
#> setosa versicolor virginica #> 1 1 0 0 #> 2 1 0 0 #> 3 1 0 0 #> 4 1 0 0 #> 5 1 0 0 #> 6 1 0 0
two_levels <- factor(rep(letters[1:2], each = 5)) class2ind(two_levels)
#> a b #> 1 1 0 #> 2 1 0 #> 3 1 0 #> 4 1 0 #> 5 1 0 #> 6 0 1 #> 7 0 1 #> 8 0 1 #> 9 0 1 #> 10 0 1
class2ind(two_levels, drop2nd = TRUE)
#> 1 2 3 4 5 6 7 8 9 10 #> 1 1 1 1 1 0 0 0 0 0