Plot the performance values versus search iteration
# S3 method for gafs plot(x, metric = x$control$metric["external"], estimate = c("internal", "external"), output = "ggplot", ...) # S3 method for gafs ggplot(data = NULL, mapping = NULL, ..., environment = NULL) # S3 method for safs ggplot(data = NULL, mapping = NULL, ..., environment = NULL)
x | |
---|---|
metric | the measure of performance to plot (e.g. RMSE, accuracy, etc) |
estimate | the type of estimate: either "internal" or "external" |
output | either "data", "ggplot" or "lattice" |
... | For |
data, mapping, environment | kept for consistency with
|
Either a data frame, ggplot object or lattice object
The mean (averaged over the resamples) is plotted against the search iteration using a scatter plot.
When output = "data"
, the unaveraged data are returned with columns
for all the performance metrics and the resample indicator.
if (FALSE) { set.seed(1) train_data <- twoClassSim(100, noiseVars = 10) test_data <- twoClassSim(10, noiseVars = 10) ## A short example ctrl <- safsControl(functions = rfSA, method = "cv", number = 3) rf_search <- safs(x = train_data[, -ncol(train_data)], y = train_data$Class, iters = 50, safsControl = ctrl) plot(rf_search) plot(rf_search, output = "lattice", auto.key = list(columns = 2)) plot_data <- plot(rf_search, output = "data") summary(plot_data) }