Extracts the coefficient path of the elastic net

extractPath(model, ...)

# S3 method for glmnet
extractPath(model, intercept = FALSE, ...)

# S3 method for cv.glmnet
extractPath(model, ...)

Arguments

model

A glmnet model

...

Further arguments

intercept

If FALSE (the default), no intercept will be provided

Value

A link[tibble]{tibble} holding the coefficients for various lambdas

Details

This is a replacement plot for visualizing the coefficient path resulting from the elastic net.

Examples

library(glmnet) data(diamonds, package='ggplot2') diaX <- useful::build.x(price ~ carat + cut + x - 1, data=diamonds, contrasts = TRUE) diaY <- useful::build.y(price ~ carat + cut + x - 1, data=diamonds) modG1 <- glmnet(x=diaX, y=diaY) extractPath(modG1)
#> # A tibble: 79 x 8 #> lambda carat cutFair cutGood `cutVery Good` cutPremium cutIdeal x #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0.953 10054. -1511. -354. 22.6 -4.64 319. -951. #> 2 1.05 10034. -1509. -354. 21.5 -5.10 318. -942. #> 3 1.14 10011. -1508. -354. 20.2 -5.60 317. -933. #> 4 1.23 9985. -1506. -354. 18.9 -6.16 316. -922. #> 5 1.33 9955. -1504. -354. 17.5 -6.77 314. -909. #> 6 1.42 9924. -1502. -353. 16.0 -7.29 313. -896. #> 7 1.51 9890. -1499. -353. 14.5 -7.78 312. -882. #> 8 1.60 9852. -1497. -352. 12.9 -8.24 310. -866. #> 9 1.70 9809. -1493. -351. 11.3 -8.67 309. -848. #> 10 1.79 9765. -1490. -350. 9.69 -8.91 307. -830. #> # … with 69 more rows
modG2 <- cv.glmnet(x=diaX, y=diaY, nfolds=5) extractPath(modG2)
#> # A tibble: 79 x 8 #> lambda carat cutFair cutGood `cutVery Good` cutPremium cutIdeal x #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0.953 10054. -1511. -354. 22.6 -4.64 319. -951. #> 2 1.05 10034. -1509. -354. 21.5 -5.10 318. -942. #> 3 1.14 10011. -1508. -354. 20.2 -5.60 317. -933. #> 4 1.23 9985. -1506. -354. 18.9 -6.16 316. -922. #> 5 1.33 9955. -1504. -354. 17.5 -6.77 314. -909. #> 6 1.42 9924. -1502. -353. 16.0 -7.29 313. -896. #> 7 1.51 9890. -1499. -353. 14.5 -7.78 312. -882. #> 8 1.60 9852. -1497. -352. 12.9 -8.24 310. -866. #> 9 1.70 9809. -1493. -351. 11.3 -8.67 309. -848. #> 10 1.79 9765. -1490. -350. 9.69 -8.91 307. -830. #> # … with 69 more rows