Automatically relabel factor levels, collapse as necessary

fct_relabel(.f, .fun, ...)

Arguments

.f

A factor (or character vector).

.fun

A function to be applied to each level. Must accept one character argument and return a character vector of the same length as its input.

You can also use ~ to create as shorthand (in the style of purrr). ~ paste(., "x") is equivalent to function(.) paste(., "x")

...

Additional arguments to fun.

Examples

gss_cat$partyid %>% fct_count()
#> # A tibble: 10 x 2 #> f n #> <fct> <int> #> 1 No answer 154 #> 2 Don't know 1 #> 3 Other party 393 #> 4 Strong republican 2314 #> 5 Not str republican 3032 #> 6 Ind,near rep 1791 #> 7 Independent 4119 #> 8 Ind,near dem 2499 #> 9 Not str democrat 3690 #> 10 Strong democrat 3490
gss_cat$partyid %>% fct_relabel(~ gsub(",", ", ", .x)) %>% fct_count()
#> # A tibble: 10 x 2 #> f n #> <fct> <int> #> 1 No answer 154 #> 2 Don't know 1 #> 3 Other party 393 #> 4 Strong republican 2314 #> 5 Not str republican 3032 #> 6 Ind, near rep 1791 #> 7 Independent 4119 #> 8 Ind, near dem 2499 #> 9 Not str democrat 3690 #> 10 Strong democrat 3490
convert_income <- function(x) { regex <- "^(?:Lt |)[$]([0-9]+).*$" is_range <- grepl(regex, x) num_income <- as.numeric(gsub(regex, "\\1", x[is_range])) num_income <- trunc(num_income / 5000) * 5000 x[is_range] <- paste0("Gt $", num_income) x } fct_count(gss_cat$rincome)
#> # A tibble: 16 x 2 #> f n #> <fct> <int> #> 1 No answer 183 #> 2 Don't know 267 #> 3 Refused 975 #> 4 $25000 or more 7363 #> 5 $20000 - 24999 1283 #> 6 $15000 - 19999 1048 #> 7 $10000 - 14999 1168 #> 8 $8000 to 9999 340 #> 9 $7000 to 7999 188 #> 10 $6000 to 6999 215 #> 11 $5000 to 5999 227 #> 12 $4000 to 4999 226 #> 13 $3000 to 3999 276 #> 14 $1000 to 2999 395 #> 15 Lt $1000 286 #> 16 Not applicable 7043
convert_income(levels(gss_cat$rincome))
#> [1] "No answer" "Don't know" "Refused" "Gt $25000" #> [5] "Gt $20000" "Gt $15000" "Gt $10000" "Gt $5000" #> [9] "Gt $5000" "Gt $5000" "Gt $5000" "Gt $0" #> [13] "Gt $0" "Gt $0" "Gt $0" "Not applicable"
rincome2 <- fct_relabel(gss_cat$rincome, convert_income) fct_count(rincome2)
#> # A tibble: 10 x 2 #> f n #> <fct> <int> #> 1 No answer 183 #> 2 Don't know 267 #> 3 Refused 975 #> 4 Gt $25000 7363 #> 5 Gt $20000 1283 #> 6 Gt $15000 1048 #> 7 Gt $10000 1168 #> 8 Gt $5000 970 #> 9 Gt $0 1183 #> 10 Not applicable 7043