Plots partial dependence functions (i.e., marginal effects) using
lattice
graphics.
plotPartial(object, ...) # S3 method for ice plotPartial(object, center = FALSE, plot.pdp = TRUE, pdp.col = "red2", pdp.lwd = 2, pdp.lty = 1, rug = FALSE, train = NULL, alpha = 1, ...) # S3 method for cice plotPartial(object, plot.pdp = TRUE, pdp.col = "red2", pdp.lwd = 2, pdp.lty = 1, rug = FALSE, train = NULL, alpha = 1, ...) # S3 method for partial plotPartial(object, center = FALSE, plot.pdp = TRUE, pdp.col = "red2", pdp.lwd = 2, pdp.lty = 1, smooth = FALSE, rug = FALSE, chull = FALSE, levelplot = TRUE, contour = FALSE, contour.color = "white", col.regions = NULL, palette = c("viridis", "magma", "inferno", "plasma", "cividis"), alpha = 1, number = 4, overlap = 0.1, train = NULL, ...)
object | An object that inherits from the |
---|---|
... | Additional optional arguments to be passed onto |
center | Logical indicating whether or not to produce centered ICE
curves (c-ICE curves). Only useful when |
plot.pdp | Logical indicating whether or not to plot the partial
dependence function on top of the ICE curves. Default is |
pdp.col | Character string specifying the color to use for the partial
dependence function when |
pdp.lwd | Integer specifying the line width to use for the partial
dependence function when |
pdp.lty | Integer or character string specifying the line type to use
for the partial dependence function when |
rug | Logical indicating whether or not to include rug marks on the
predictor axes. Default is |
train | Data frame containing the original training data. Only required
if |
alpha | Numeric value in |
smooth | Logical indicating whether or not to overlay a LOESS smooth.
Default is |
chull | Logical indicating whether or not to restrict the first two
variables in |
levelplot | Logical indicating whether or not to use a false color level
plot ( |
contour | Logical indicating whether or not to add contour lines to the
level plot. Only used when |
contour.color | Character string specifying the color to use for the
contour lines when |
col.regions | Color vector to be used for trivariate displays. If
|
palette | Character string indicating the colormap option to use. Five options are available: "viridis" (the default), "magma", "inferno", "plasma", and "cividis". |
number | Integer specifying the number of conditional intervals to use
for the continuous panel variables. See |
overlap | The fraction of overlap of the conditioning variables. See
|
if (FALSE) { # # Regression example (requires randomForest package to run) # # Load required packages library(ggplot2) # required to use autoplot library(randomForest) # Fit a random forest to the Boston housing data data (boston) # load the boston housing data set.seed(101) # for reproducibility boston.rf <- randomForest(cmedv ~ ., data = boston) # Partial dependence of cmedv on lstat boston.rf %>% partial(pred.var = "lstat") %>% plotPartial(rug = TRUE, train = boston) # Partial dependence of cmedv on lstat and rm boston.rf %>% partial(pred.var = c("lstat", "rm"), chull = TRUE, progress = "text") %>% plotPartial(contour = TRUE, legend.title = "rm") # ICE curves and c-ICE curves age.ice <- partial(boston.rf, pred.var = "lstat", ice = TRUE) p1 <- plotPartial(age.ice, alpha = 0.5) p2 <- plotPartial(age.ice, center = TRUE, alpha = 0.5) grid.arrange(p1, p2, ncol = 2) }