summary.mvr.Rd
Summary and print methods for mvr
and mvrVal
objects.
# S3 method for mvr summary(object, what = c("all", "validation", "training"), digits = 4, print.gap = 2, ...) # S3 method for mvr print(x, ...) # S3 method for mvrVal print(x, digits = 4, print.gap = 2, ...)
x, object | an |
---|---|
what | one of |
digits | integer. Minimum number of significant digits in the output. Default is 4. |
print.gap | Integer. Gap between coloumns of the printed tables. |
... | Other arguments sent to underlying methods. |
If what
is "training"
, the explained variances are
given; if it is "validation"
, the cross-validated RMSEPs (if
available) are given; if it is "all"
, both are given.
print.mvr
and print.mvrVal
return the object invisibly.
#> Partial least squares regression , fitted with the simpls algorithm. #> Cross-validated using 28 leave-one-out segments. #> Call: #> mvr(formula = density ~ NIR, ncomp = 8, data = yarn, validation = "LOO")summary(nir.mvr)#> Data: X dimension: 28 268 #> Y dimension: 28 1 #> Fit method: simpls #> Number of components considered: 8 #> #> VALIDATION: RMSEP #> Cross-validated using 28 leave-one-out segments. #> (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps #> CV 27.46 4.600 3.900 2.090 0.7686 0.5004 0.4425 #> adjCV 27.46 4.454 3.973 2.084 0.7570 0.4967 0.4398 #> 7 comps 8 comps #> CV 0.2966 0.2643 #> adjCV 0.2926 0.2610 #> #> TRAINING: % variance explained #> 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps #> X 46.83 98.38 99.46 99.67 99.85 99.97 99.98 99.99 #> density 98.12 98.25 99.64 99.97 99.99 99.99 100.00 100.00RMSEP(nir.mvr)#> (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps #> CV 27.46 4.600 3.900 2.090 0.7686 0.5004 0.4425 #> adjCV 27.46 4.454 3.973 2.084 0.7570 0.4967 0.4398 #> 7 comps 8 comps #> CV 0.2966 0.2643 #> adjCV 0.2926 0.2610