This function completes the subsetting, transforming and ordering triad with a function that works in a similar way to subset and transform but for reordering a data frame by its columns. This saves a lot of typing!

arrange(df, ...)

Arguments

df

data frame to reorder

...

expressions evaluated in the context of df and then fed to order

See also

order for sorting function in the base package

Examples

# sort mtcars data by cylinder and displacement mtcars[with(mtcars, order(cyl, disp)), ]
#> mpg cyl disp hp drat wt qsec vs am gear carb #> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 #> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 #> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 #> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 #> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 #> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 #> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 #> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 #> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 #> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 #> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 #> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 #> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 #> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 #> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 #> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 #> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 #> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 #> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 #> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 #> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 #> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 #> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 #> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 #> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 #> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 #> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 #> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 #> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 #> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 #> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 #> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
# Same result using arrange: no need to use with(), as the context is implicit # NOTE: plyr functions do NOT preserve row.names arrange(mtcars, cyl, disp)
#> mpg cyl disp hp drat wt qsec vs am gear carb #> 1 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 #> 2 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 #> 3 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 #> 4 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 #> 5 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 #> 6 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 #> 7 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 #> 8 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 #> 9 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 #> 10 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 #> 11 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 #> 12 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 #> 13 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 #> 14 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 #> 15 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 #> 16 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 #> 17 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 #> 18 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 #> 19 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 #> 20 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 #> 21 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 #> 22 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 #> 23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 #> 24 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 #> 25 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 #> 26 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 #> 27 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 #> 28 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 #> 29 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 #> 30 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 #> 31 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 #> 32 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
# Let's keep the row.names in this example myCars = cbind(vehicle=row.names(mtcars), mtcars) arrange(myCars, cyl, disp)
#> vehicle mpg cyl disp hp drat wt qsec vs am gear carb #> 1 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 #> 2 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 #> 3 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 #> 4 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 #> 5 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 #> 6 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 #> 7 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 #> 8 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 #> 9 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 #> 10 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 #> 11 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 #> 12 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 #> 13 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 #> 14 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 #> 15 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 #> 16 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 #> 17 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 #> 18 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 #> 19 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 #> 20 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 #> 21 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 #> 22 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 #> 23 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 #> 24 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 #> 25 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 #> 26 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 #> 27 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 #> 28 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 #> 29 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 #> 30 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 #> 31 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 #> 32 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
# Sort with displacement in descending order arrange(myCars, cyl, desc(disp))
#> vehicle mpg cyl disp hp drat wt qsec vs am gear carb #> 1 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 #> 2 Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 #> 3 Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 #> 4 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 #> 5 Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 #> 6 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 #> 7 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 #> 8 Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 #> 9 Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 #> 10 Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 #> 11 Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 #> 12 Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 #> 13 Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 #> 14 Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 #> 15 Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 #> 16 Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 #> 17 Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 #> 18 Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 #> 19 Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 #> 20 Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 #> 21 Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 #> 22 Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 #> 23 Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 #> 24 Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 #> 25 Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 #> 26 Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 #> 27 Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 #> 28 AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 #> 29 Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 #> 30 Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 #> 31 Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 #> 32 Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3