Transpose turns a list-of-lists "inside-out"; it turns a pair of lists into a
list of pairs, or a list of pairs into pair of lists. For example,
if you had a list of length n where each component had values a
and
b
, transpose()
would make a list with elements a
and
b
that contained lists of length n. It's called transpose because
x[[1]][[2]]
is equivalent to transpose(x)[[2]][[1]]
.
transpose(.l, .names = NULL)
.l | A list of vectors to transpose. The first element is used as the template; you'll get a warning if a subsequent element has a different length. |
---|---|
.names | For efficiency, |
A list with indexing transposed compared to .l
.
Note that transpose()
is its own inverse, much like the
transpose operation on a matrix. You can get back the original
input by transposing it twice.
#> List of 5 #> $ :List of 2 #> ..$ x: num 0.554 #> ..$ y: num [1:5] 0.113 0.0391 0.9627 0.7334 0.5532 #> $ :List of 2 #> ..$ x: num 0.402 #> ..$ y: num [1:5] 0.656 0.537 0.49 0.509 0.794 #> $ :List of 2 #> ..$ x: num 0.119 #> ..$ y: num [1:5] 0.13 0.528 0.191 0.716 0.267 #> $ :List of 2 #> ..$ x: num 0.953 #> ..$ y: num [1:5] 0.781 0.789 0.4591 0.196 0.0605 #> $ :List of 2 #> ..$ x: num 0.518 #> ..$ y: num [1:5] 0.6462 0.4103 0.0575 0.0914 0.8357#> List of 2 #> $ x:List of 5 #> ..$ : num 0.554 #> ..$ : num 0.402 #> ..$ : num 0.119 #> ..$ : num 0.953 #> ..$ : num 0.518 #> $ y:List of 5 #> ..$ : num [1:5] 0.113 0.0391 0.9627 0.7334 0.5532 #> ..$ : num [1:5] 0.656 0.537 0.49 0.509 0.794 #> ..$ : num [1:5] 0.13 0.528 0.191 0.716 0.267 #> ..$ : num [1:5] 0.781 0.789 0.4591 0.196 0.0605 #> ..$ : num [1:5] 0.6462 0.4103 0.0575 0.0914 0.8357#> List of 5 #> $ :List of 2 #> ..$ x: num 0.554 #> ..$ y: num [1:5] 0.113 0.0391 0.9627 0.7334 0.5532 #> $ :List of 2 #> ..$ x: num 0.402 #> ..$ y: num [1:5] 0.656 0.537 0.49 0.509 0.794 #> $ :List of 2 #> ..$ x: num 0.119 #> ..$ y: num [1:5] 0.13 0.528 0.191 0.716 0.267 #> $ :List of 2 #> ..$ x: num 0.953 #> ..$ y: num [1:5] 0.781 0.789 0.4591 0.196 0.0605 #> $ :List of 2 #> ..$ x: num 0.518 #> ..$ y: num [1:5] 0.6462 0.4103 0.0575 0.0914 0.8357# transpose() is useful in conjunction with safely() & quietly() x <- list("a", 1, 2) y <- x %>% map(safely(log)) y %>% str()#> List of 3 #> $ :List of 2 #> ..$ result: NULL #> ..$ error :List of 2 #> .. ..$ message: chr "non-numeric argument to mathematical function" #> .. ..$ call : language .Primitive("log")(x, base) #> .. ..- attr(*, "class")= chr [1:3] "simpleError" "error" "condition" #> $ :List of 2 #> ..$ result: num 0 #> ..$ error : NULL #> $ :List of 2 #> ..$ result: num 0.693 #> ..$ error : NULL#> List of 2 #> $ result:List of 3 #> ..$ : NULL #> ..$ : num 0 #> ..$ : num 0.693 #> $ error :List of 3 #> ..$ :List of 2 #> .. ..$ message: chr "non-numeric argument to mathematical function" #> .. ..$ call : language .Primitive("log")(x, base) #> .. ..- attr(*, "class")= chr [1:3] "simpleError" "error" "condition" #> ..$ : NULL #> ..$ : NULL# Use simplify_all() to reduce to atomic vectors where possible x <- list(list(a = 1, b = 2), list(a = 3, b = 4), list(a = 5, b = 6)) x %>% transpose()#> $a #> $a[[1]] #> [1] 1 #> #> $a[[2]] #> [1] 3 #> #> $a[[3]] #> [1] 5 #> #> #> $b #> $b[[1]] #> [1] 2 #> #> $b[[2]] #> [1] 4 #> #> $b[[3]] #> [1] 6 #> #>#> $a #> [1] 1 3 5 #> #> $b #> [1] 2 4 6 #># Provide explicit component names to prevent loss of those that don't # appear in first component ll <- list( list(x = 1, y = "one"), list(z = "deux", x = 2) ) ll %>% transpose()#> $x #> $x[[1]] #> [1] 1 #> #> $x[[2]] #> [1] 2 #> #> #> $y #> $y[[1]] #> [1] "one" #> #> $y[[2]] #> NULL #> #>#> $x #> $x[[1]] #> [1] 1 #> #> $x[[2]] #> [1] 2 #> #> #> $y #> $y[[1]] #> [1] "one" #> #> $y[[2]] #> NULL #> #> #> $z #> $z[[1]] #> NULL #> #> $z[[2]] #> [1] "deux" #> #>