Read a delimited file by chunks
read_delim_chunked(file, callback, chunk_size = 10000, delim, quote = "\"", escape_backslash = FALSE, escape_double = TRUE, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, comment = "", trim_ws = FALSE, skip = 0, guess_max = min(1000, chunk_size), progress = show_progress(), skip_empty_rows = TRUE) read_csv_chunked(file, callback, chunk_size = 10000, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, guess_max = min(1000, chunk_size), progress = show_progress(), skip_empty_rows = TRUE) read_csv2_chunked(file, callback, chunk_size = 10000, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, guess_max = min(1000, chunk_size), progress = show_progress(), skip_empty_rows = TRUE) read_tsv_chunked(file, callback, chunk_size = 10000, col_names = TRUE, col_types = NULL, locale = default_locale(), na = c("", "NA"), quoted_na = TRUE, quote = "\"", comment = "", trim_ws = TRUE, skip = 0, guess_max = min(1000, chunk_size), progress = show_progress(), skip_empty_rows = TRUE)
file | Either a path to a file, a connection, or literal data (either a single string or a raw vector). Files ending in Literal data is most useful for examples and tests. It must contain at least one new line to be recognised as data (instead of a path) or be a vector of greater than length 1. Using a value of |
---|---|
callback | A callback function to call on each chunk |
chunk_size | The number of rows to include in each chunk |
delim | Single character used to separate fields within a record. |
quote | Single character used to quote strings. |
escape_backslash | Does the file use backslashes to escape special
characters? This is more general than |
escape_double | Does the file escape quotes by doubling them?
i.e. If this option is |
col_names | Either If If Missing ( |
col_types | One of If If a column specification created by Alternatively, you can use a compact string representation where each
character represents one column:
c = character, i = integer, n = number, d = double,
l = logical, f = factor, D = date, T = date time, t = time, ? = guess, or
|
locale | The locale controls defaults that vary from place to place.
The default locale is US-centric (like R), but you can use
|
na | Character vector of strings to interpret as missing values. Set this
option to |
quoted_na | Should missing values inside quotes be treated as missing values (the default) or strings. |
comment | A string used to identify comments. Any text after the comment characters will be silently ignored. |
trim_ws | Should leading and trailing whitespace be trimmed from each field before parsing it? |
skip | Number of lines to skip before reading data. |
guess_max | Maximum number of records to use for guessing column types. |
progress | Display a progress bar? By default it will only display
in an interactive session and not while knitting a document. The display
is updated every 50,000 values and will only display if estimated reading
time is 5 seconds or more. The automatic progress bar can be disabled by
setting option |
skip_empty_rows | Should blank rows be ignored altogether? i.e. If this
option is |
Other chunked: callback
,
melt_delim_chunked
,
read_lines_chunked
# Cars with 3 gears f <- function(x, pos) subset(x, gear == 3) read_csv_chunked(readr_example("mtcars.csv"), DataFrameCallback$new(f), chunk_size = 5)#>#> #> #> #> #> #> #> #> #> #> #> #> #>#> # A tibble: 15 x 11 #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 #> 2 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 #> 3 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 #> 4 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 #> 5 16.4 8 276. 180 3.07 4.07 17.4 0 0 3 3 #> 6 17.3 8 276. 180 3.07 3.73 17.6 0 0 3 3 #> 7 15.2 8 276. 180 3.07 3.78 18 0 0 3 3 #> 8 10.4 8 472 205 2.93 5.25 18.0 0 0 3 4 #> 9 10.4 8 460 215 3 5.42 17.8 0 0 3 4 #> 10 14.7 8 440 230 3.23 5.34 17.4 0 0 3 4 #> 11 21.5 4 120. 97 3.7 2.46 20.0 1 0 3 1 #> 12 15.5 8 318 150 2.76 3.52 16.9 0 0 3 2 #> 13 15.2 8 304 150 3.15 3.44 17.3 0 0 3 2 #> 14 13.3 8 350 245 3.73 3.84 15.4 0 0 3 4 #> 15 19.2 8 400 175 3.08 3.84 17.0 0 0 3 2