Maturing lifecycle

One of the main features of the tbl_df class is the printing:

  • Tibbles only print as many rows and columns as fit on one screen, supplemented by a summary of the remaining rows and columns.

  • Tibble reveals the type of each column, which keeps the user informed about whether a variable is, e.g., <chr> or <fct> (character versus factor).

Printing can be tweaked for a one-off call by calling print() explicitly and setting arguments like n and width. More persistent control is available by setting the options described below.

# S3 method for tbl
print(x, ..., n = NULL, width = NULL, n_extra = NULL)

# S3 method for tbl
format(x, ..., n = NULL, width = NULL, n_extra = NULL)

trunc_mat(x, n = NULL, width = NULL, n_extra = NULL)

Arguments

x

Object to format or print.

...

Other arguments passed on to individual methods.

n

Number of rows to show. If NULL, the default, will print all rows if less than option tibble.print_max. Otherwise, will print tibble.print_min rows.

width

Width of text output to generate. This defaults to NULL, which means use getOption("tibble.width") or (if also NULL) getOption("width"); the latter displays only the columns that fit on one screen. You can also set options(tibble.width = Inf) to override this default and always print all columns.

n_extra

Number of extra columns to print abbreviated information for, if the width is too small for the entire tibble. If NULL, the default, will print information about at most tibble.max_extra_cols extra columns.

Package options

Options used by the tibble and pillar packages to format and print tbl_df objects. Used by the formatting workhorse trunc_mat() and, therefore, indirectly, by print.tbl().

  • tibble.print_max: Row number threshold: Maximum number of rows printed. Set to Inf to always print all rows. Default: 20.

  • tibble.print_min: Number of rows printed if row number threshold is exceeded. Default: 10.

  • tibble.width: Output width. Default: NULL (use width option).

  • tibble.max_extra_cols: Number of extra columns printed in reduced form. Default: 100.

  • pillar.bold: Use bold font, e.g. for column headers? This currently defaults to FALSE, because many terminal fonts have poor support for bold fonts.

  • pillar.subtle: Use subtle style, e.g. for row numbers and data types? Default: TRUE.

  • pillar.subtle_num: Use subtle style for insignificant digits? Default: FALSE, is also affected by the pillar.subtle option.

  • pillar.neg: Highlight negative numbers? Default: TRUE.

  • pillar.sigfig: The number of significant digits that will be printed and highlighted, default: 3. Set the pillar.subtle option to FALSE to turn off highlighting of significant digits.

  • pillar.min_title_chars: The minimum number of characters for the column title, default: 15. Column titles may be truncated up to that width to save horizontal space. Set to Inf to turn off truncation of column titles.

Examples

print(as_tibble(mtcars))
#> # A tibble: 32 x 11 #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 #> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 #> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 #> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 #> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 #> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 #> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 #> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 #> # … with 22 more rows
print(as_tibble(mtcars), n = 1)
#> # A tibble: 32 x 11 #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> # … with 31 more rows
print(as_tibble(mtcars), n = 3)
#> # A tibble: 32 x 11 #> mpg cyl disp hp drat wt qsec vs am gear carb #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 #> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> # … with 29 more rows
print(as_tibble(iris), n = 100)
#> # A tibble: 150 x 5 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species #> <dbl> <dbl> <dbl> <dbl> <fct> #> 1 5.1 3.5 1.4 0.2 setosa #> 2 4.9 3 1.4 0.2 setosa #> 3 4.7 3.2 1.3 0.2 setosa #> 4 4.6 3.1 1.5 0.2 setosa #> 5 5 3.6 1.4 0.2 setosa #> 6 5.4 3.9 1.7 0.4 setosa #> 7 4.6 3.4 1.4 0.3 setosa #> 8 5 3.4 1.5 0.2 setosa #> 9 4.4 2.9 1.4 0.2 setosa #> 10 4.9 3.1 1.5 0.1 setosa #> 11 5.4 3.7 1.5 0.2 setosa #> 12 4.8 3.4 1.6 0.2 setosa #> 13 4.8 3 1.4 0.1 setosa #> 14 4.3 3 1.1 0.1 setosa #> 15 5.8 4 1.2 0.2 setosa #> 16 5.7 4.4 1.5 0.4 setosa #> 17 5.4 3.9 1.3 0.4 setosa #> 18 5.1 3.5 1.4 0.3 setosa #> 19 5.7 3.8 1.7 0.3 setosa #> 20 5.1 3.8 1.5 0.3 setosa #> 21 5.4 3.4 1.7 0.2 setosa #> 22 5.1 3.7 1.5 0.4 setosa #> 23 4.6 3.6 1 0.2 setosa #> 24 5.1 3.3 1.7 0.5 setosa #> 25 4.8 3.4 1.9 0.2 setosa #> 26 5 3 1.6 0.2 setosa #> 27 5 3.4 1.6 0.4 setosa #> 28 5.2 3.5 1.5 0.2 setosa #> 29 5.2 3.4 1.4 0.2 setosa #> 30 4.7 3.2 1.6 0.2 setosa #> 31 4.8 3.1 1.6 0.2 setosa #> 32 5.4 3.4 1.5 0.4 setosa #> 33 5.2 4.1 1.5 0.1 setosa #> 34 5.5 4.2 1.4 0.2 setosa #> 35 4.9 3.1 1.5 0.2 setosa #> 36 5 3.2 1.2 0.2 setosa #> 37 5.5 3.5 1.3 0.2 setosa #> 38 4.9 3.6 1.4 0.1 setosa #> 39 4.4 3 1.3 0.2 setosa #> 40 5.1 3.4 1.5 0.2 setosa #> 41 5 3.5 1.3 0.3 setosa #> 42 4.5 2.3 1.3 0.3 setosa #> 43 4.4 3.2 1.3 0.2 setosa #> 44 5 3.5 1.6 0.6 setosa #> 45 5.1 3.8 1.9 0.4 setosa #> 46 4.8 3 1.4 0.3 setosa #> 47 5.1 3.8 1.6 0.2 setosa #> 48 4.6 3.2 1.4 0.2 setosa #> 49 5.3 3.7 1.5 0.2 setosa #> 50 5 3.3 1.4 0.2 setosa #> 51 7 3.2 4.7 1.4 versicolor #> 52 6.4 3.2 4.5 1.5 versicolor #> 53 6.9 3.1 4.9 1.5 versicolor #> 54 5.5 2.3 4 1.3 versicolor #> 55 6.5 2.8 4.6 1.5 versicolor #> 56 5.7 2.8 4.5 1.3 versicolor #> 57 6.3 3.3 4.7 1.6 versicolor #> 58 4.9 2.4 3.3 1 versicolor #> 59 6.6 2.9 4.6 1.3 versicolor #> 60 5.2 2.7 3.9 1.4 versicolor #> 61 5 2 3.5 1 versicolor #> 62 5.9 3 4.2 1.5 versicolor #> 63 6 2.2 4 1 versicolor #> 64 6.1 2.9 4.7 1.4 versicolor #> 65 5.6 2.9 3.6 1.3 versicolor #> 66 6.7 3.1 4.4 1.4 versicolor #> 67 5.6 3 4.5 1.5 versicolor #> 68 5.8 2.7 4.1 1 versicolor #> 69 6.2 2.2 4.5 1.5 versicolor #> 70 5.6 2.5 3.9 1.1 versicolor #> 71 5.9 3.2 4.8 1.8 versicolor #> 72 6.1 2.8 4 1.3 versicolor #> 73 6.3 2.5 4.9 1.5 versicolor #> 74 6.1 2.8 4.7 1.2 versicolor #> 75 6.4 2.9 4.3 1.3 versicolor #> 76 6.6 3 4.4 1.4 versicolor #> 77 6.8 2.8 4.8 1.4 versicolor #> 78 6.7 3 5 1.7 versicolor #> 79 6 2.9 4.5 1.5 versicolor #> 80 5.7 2.6 3.5 1 versicolor #> 81 5.5 2.4 3.8 1.1 versicolor #> 82 5.5 2.4 3.7 1 versicolor #> 83 5.8 2.7 3.9 1.2 versicolor #> 84 6 2.7 5.1 1.6 versicolor #> 85 5.4 3 4.5 1.5 versicolor #> 86 6 3.4 4.5 1.6 versicolor #> 87 6.7 3.1 4.7 1.5 versicolor #> 88 6.3 2.3 4.4 1.3 versicolor #> 89 5.6 3 4.1 1.3 versicolor #> 90 5.5 2.5 4 1.3 versicolor #> 91 5.5 2.6 4.4 1.2 versicolor #> 92 6.1 3 4.6 1.4 versicolor #> 93 5.8 2.6 4 1.2 versicolor #> 94 5 2.3 3.3 1 versicolor #> 95 5.6 2.7 4.2 1.3 versicolor #> 96 5.7 3 4.2 1.2 versicolor #> 97 5.7 2.9 4.2 1.3 versicolor #> 98 6.2 2.9 4.3 1.3 versicolor #> 99 5.1 2.5 3 1.1 versicolor #> 100 5.7 2.8 4.1 1.3 versicolor #> # … with 50 more rows
print(mtcars, width = 10)
#> mpg cyl disp hp drat wt qsec vs am gear carb #> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 #> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 #> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 #> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 #> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 #> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 #> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 #> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 #> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 #> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 #> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 #> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 #> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 #> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 #> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 #> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 #> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 #> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 #> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 #> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 #> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 #> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 #> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 #> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 #> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 #> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 #> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 #> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 #> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 #> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 #> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 #> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
mtcars2 <- as_tibble(cbind(mtcars, mtcars), .name_repair = "unique")
#> New names: #> * mpg -> mpg...1 #> * cyl -> cyl...2 #> * disp -> disp...3 #> * hp -> hp...4 #> * drat -> drat...5 #> * … and 17 more problems
print(mtcars2, n = 25, n_extra = 3)
#> # A tibble: 32 x 22 #> mpg...1 cyl...2 disp...3 hp...4 drat...5 wt...6 qsec...7 vs...8 am...9 #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21 6 160 110 3.9 2.62 16.5 0 1 #> 2 21 6 160 110 3.9 2.88 17.0 0 1 #> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 #> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 #> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 #> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 #> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 #> 8 24.4 4 147. 62 3.69 3.19 20 1 0 #> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 #> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 #> 11 17.8 6 168. 123 3.92 3.44 18.9 1 0 #> 12 16.4 8 276. 180 3.07 4.07 17.4 0 0 #> 13 17.3 8 276. 180 3.07 3.73 17.6 0 0 #> 14 15.2 8 276. 180 3.07 3.78 18 0 0 #> 15 10.4 8 472 205 2.93 5.25 18.0 0 0 #> 16 10.4 8 460 215 3 5.42 17.8 0 0 #> 17 14.7 8 440 230 3.23 5.34 17.4 0 0 #> 18 32.4 4 78.7 66 4.08 2.2 19.5 1 1 #> 19 30.4 4 75.7 52 4.93 1.62 18.5 1 1 #> 20 33.9 4 71.1 65 4.22 1.84 19.9 1 1 #> 21 21.5 4 120. 97 3.7 2.46 20.0 1 0 #> 22 15.5 8 318 150 2.76 3.52 16.9 0 0 #> 23 15.2 8 304 150 3.15 3.44 17.3 0 0 #> 24 13.3 8 350 245 3.73 3.84 15.4 0 0 #> 25 19.2 8 400 175 3.08 3.84 17.0 0 0 #> # … with 7 more rows, and 13 more variables: gear...10 <dbl>, carb...11 <dbl>, #> # mpg...12 <dbl>, …
trunc_mat(mtcars)
#> # Description: df[,11] [32 × 11] #> mpg cyl disp hp drat wt qsec vs am gear carb #> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 #> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 #> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 #> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 #> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 #> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 #> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 #> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 #> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 #> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 #> # … with 22 more rows
if (requireNamespace("nycflights13", quietly = TRUE)) { print(nycflights13::flights, n_extra = 2) print(nycflights13::flights, width = Inf) }
#> # A tibble: 336,776 x 19 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time #> <int> <int> <int> <int> <int> <dbl> <int> <int> #> 1 2013 1 1 517 515 2 830 819 #> 2 2013 1 1 533 529 4 850 830 #> 3 2013 1 1 542 540 2 923 850 #> 4 2013 1 1 544 545 -1 1004 1022 #> 5 2013 1 1 554 600 -6 812 837 #> 6 2013 1 1 554 558 -4 740 728 #> 7 2013 1 1 555 600 -5 913 854 #> 8 2013 1 1 557 600 -3 709 723 #> 9 2013 1 1 557 600 -3 838 846 #> 10 2013 1 1 558 600 -2 753 745 #> # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>, #> # carrier <chr>, … #> # A tibble: 336,776 x 19 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time #> <int> <int> <int> <int> <int> <dbl> <int> <int> #> 1 2013 1 1 517 515 2 830 819 #> 2 2013 1 1 533 529 4 850 830 #> 3 2013 1 1 542 540 2 923 850 #> 4 2013 1 1 544 545 -1 1004 1022 #> 5 2013 1 1 554 600 -6 812 837 #> 6 2013 1 1 554 558 -4 740 728 #> 7 2013 1 1 555 600 -5 913 854 #> 8 2013 1 1 557 600 -3 709 723 #> 9 2013 1 1 557 600 -3 838 846 #> 10 2013 1 1 558 600 -2 753 745 #> arr_delay carrier flight tailnum origin dest air_time distance hour minute #> <dbl> <chr> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 11 UA 1545 N14228 EWR IAH 227 1400 5 15 #> 2 20 UA 1714 N24211 LGA IAH 227 1416 5 29 #> 3 33 AA 1141 N619AA JFK MIA 160 1089 5 40 #> 4 -18 B6 725 N804JB JFK BQN 183 1576 5 45 #> 5 -25 DL 461 N668DN LGA ATL 116 762 6 0 #> 6 12 UA 1696 N39463 EWR ORD 150 719 5 58 #> 7 19 B6 507 N516JB EWR FLL 158 1065 6 0 #> 8 -14 EV 5708 N829AS LGA IAD 53 229 6 0 #> 9 -8 B6 79 N593JB JFK MCO 140 944 6 0 #> 10 8 AA 301 N3ALAA LGA ORD 138 733 6 0 #> time_hour #> <dttm> #> 1 2013-01-01 05:00:00 #> 2 2013-01-01 05:00:00 #> 3 2013-01-01 05:00:00 #> 4 2013-01-01 05:00:00 #> 5 2013-01-01 06:00:00 #> 6 2013-01-01 05:00:00 #> 7 2013-01-01 06:00:00 #> 8 2013-01-01 06:00:00 #> 9 2013-01-01 06:00:00 #> 10 2013-01-01 06:00:00 #> # … with 336,766 more rows