Development on gather()
is complete, and for new code we recommend
switching to pivot_longer()
, which is easier to use, more featureful, and
still under active development.
df %>% gather("key", "value", x, y, z)
is equivalent to
df %>% pivot_longer(c(x, y, z), names_to = "key", values_to = "value")
See more details in vignette("pivot")
.
gather(data, key = "key", value = "value", ..., na.rm = FALSE, convert = FALSE, factor_key = FALSE)
data | A data frame. |
---|---|
key, value | Names of new key and value columns, as strings or symbols. This argument is passed by expression and supports
quasiquotation (you can unquote strings
and symbols). The name is captured from the expression with
|
... | A selection of columns. If empty, all variables are
selected. You can supply bare variable names, select all
variables between x and z with |
na.rm | If |
convert | If |
factor_key | If |
Arguments for selecting columns are passed to
tidyselect::vars_select()
and are treated specially. Unlike other
verbs, selecting functions make a strict distinction between data
expressions and context expressions.
A data expression is either a bare name like x
or an expression
like x:y
or c(x, y)
. In a data expression, you can only refer
to columns from the data frame.
Everything else is a context expression in which you can only
refer to objects that you have defined with <-
.
For instance, col1:col3
is a data expression that refers to data
columns, while seq(start, end)
is a context expression that
refers to objects from the contexts.
If you really need to refer to contextual objects from a data
expression, you can unquote them with the tidy eval operator
!!
. This operator evaluates its argument in the context and
inlines the result in the surrounding function call. For instance,
c(x, !! x)
selects the x
column within the data frame and the
column referred to by the object x
defined in the context (which
can contain either a column name as string or a column position).
library(dplyr) # From https://stackoverflow.com/questions/1181060 stocks <- tibble( time = as.Date('2009-01-01') + 0:9, X = rnorm(10, 0, 1), Y = rnorm(10, 0, 2), Z = rnorm(10, 0, 4) ) gather(stocks, "stock", "price", -time)#> # A tibble: 30 x 3 #> time stock price #> <date> <chr> <dbl> #> 1 2009-01-01 X -1.63 #> 2 2009-01-02 X 0.512 #> 3 2009-01-03 X -1.86 #> 4 2009-01-04 X -0.522 #> 5 2009-01-05 X -0.0526 #> 6 2009-01-06 X 0.543 #> 7 2009-01-07 X -0.914 #> 8 2009-01-08 X 0.468 #> 9 2009-01-09 X 0.363 #> 10 2009-01-10 X -1.30 #> # … with 20 more rowsstocks %>% gather("stock", "price", -time)#> # A tibble: 30 x 3 #> time stock price #> <date> <chr> <dbl> #> 1 2009-01-01 X -1.63 #> 2 2009-01-02 X 0.512 #> 3 2009-01-03 X -1.86 #> 4 2009-01-04 X -0.522 #> 5 2009-01-05 X -0.0526 #> 6 2009-01-06 X 0.543 #> 7 2009-01-07 X -0.914 #> 8 2009-01-08 X 0.468 #> 9 2009-01-09 X 0.363 #> 10 2009-01-10 X -1.30 #> # … with 20 more rows# get first observation for each Species in iris data -- base R mini_iris <- iris[c(1, 51, 101), ] # gather Sepal.Length, Sepal.Width, Petal.Length, Petal.Width gather(mini_iris, key = "flower_att", value = "measurement", Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)#> Species flower_att measurement #> 1 setosa Sepal.Length 5.1 #> 2 versicolor Sepal.Length 7.0 #> 3 virginica Sepal.Length 6.3 #> 4 setosa Sepal.Width 3.5 #> 5 versicolor Sepal.Width 3.2 #> 6 virginica Sepal.Width 3.3 #> 7 setosa Petal.Length 1.4 #> 8 versicolor Petal.Length 4.7 #> 9 virginica Petal.Length 6.0 #> 10 setosa Petal.Width 0.2 #> 11 versicolor Petal.Width 1.4 #> 12 virginica Petal.Width 2.5# same result but less verbose gather(mini_iris, key = "flower_att", value = "measurement", -Species)#> Species flower_att measurement #> 1 setosa Sepal.Length 5.1 #> 2 versicolor Sepal.Length 7.0 #> 3 virginica Sepal.Length 6.3 #> 4 setosa Sepal.Width 3.5 #> 5 versicolor Sepal.Width 3.2 #> 6 virginica Sepal.Width 3.3 #> 7 setosa Petal.Length 1.4 #> 8 versicolor Petal.Length 4.7 #> 9 virginica Petal.Length 6.0 #> 10 setosa Petal.Width 0.2 #> 11 versicolor Petal.Width 1.4 #> 12 virginica Petal.Width 2.5# repeat iris example using dplyr and the pipe operator library(dplyr) mini_iris <- iris %>% group_by(Species) %>% slice(1) mini_iris %>% gather(key = "flower_att", value = "measurement", -Species)#> # A tibble: 12 x 3 #> # Groups: Species [3] #> Species flower_att measurement #> <fct> <chr> <dbl> #> 1 setosa Sepal.Length 5.1 #> 2 versicolor Sepal.Length 7 #> 3 virginica Sepal.Length 6.3 #> 4 setosa Sepal.Width 3.5 #> 5 versicolor Sepal.Width 3.2 #> 6 virginica Sepal.Width 3.3 #> 7 setosa Petal.Length 1.4 #> 8 versicolor Petal.Length 4.7 #> 9 virginica Petal.Length 6 #> 10 setosa Petal.Width 0.2 #> 11 versicolor Petal.Width 1.4 #> 12 virginica Petal.Width 2.5