Print information about xgb.Booster.

# S3 method for xgb.Booster
print(x, verbose = FALSE, ...)

Arguments

x

an xgb.Booster object

verbose

whether to print detailed data (e.g., attribute values)

...

not currently used

Examples

data(agaricus.train, package='xgboost') train <- agaricus.train bst <- xgboost(data = train$data, label = train$label, max_depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
#> [1] train-error:0.046522 #> [2] train-error:0.022263
attr(bst, 'myattr') <- 'memo' print(bst)
#> ##### xgb.Booster #> raw: 1.1 Kb #> call: #> xgb.train(params = params, data = dtrain, nrounds = nrounds, #> watchlist = watchlist, verbose = verbose, print_every_n = print_every_n, #> early_stopping_rounds = early_stopping_rounds, maximize = maximize, #> save_period = save_period, save_name = save_name, xgb_model = xgb_model, #> callbacks = callbacks, max_depth = 2, eta = 1, nthread = 2, #> objective = "binary:logistic") #> params (as set within xgb.train): #> max_depth = "2", eta = "1", nthread = "2", objective = "binary:logistic", silent = "1" #> xgb.attributes: #> niter #> callbacks: #> cb.print.evaluation(period = print_every_n) #> cb.evaluation.log() #> # of features: 126 #> niter: 2 #> nfeatures : 126 #> evaluation_log: #> iter train_error #> 1 0.046522 #> 2 0.022263
print(bst, verbose=TRUE)
#> ##### xgb.Booster #> raw: 1.1 Kb #> call: #> xgb.train(params = params, data = dtrain, nrounds = nrounds, #> watchlist = watchlist, verbose = verbose, print_every_n = print_every_n, #> early_stopping_rounds = early_stopping_rounds, maximize = maximize, #> save_period = save_period, save_name = save_name, xgb_model = xgb_model, #> callbacks = callbacks, max_depth = 2, eta = 1, nthread = 2, #> objective = "binary:logistic") #> params (as set within xgb.train): #> max_depth = "2", eta = "1", nthread = "2", objective = "binary:logistic", silent = "1" #> xgb.attributes: #> niter = "1" #> callbacks: #> cb.print.evaluation(period = print_every_n) #> cb.evaluation.log() #> # of features: 126 #> niter: 2 #> nfeatures : 126 #> evaluation_log: #> iter train_error #> 1 0.046522 #> 2 0.022263