as.data.table.Rd
Functions to check if an object is data.table
, or coerce it if possible.
as.data.table(x, keep.rownames=FALSE, ...) # S3 method for data.table as.data.table(x, ...) # S3 method for array as.data.table(x, keep.rownames=FALSE, key=NULL, sorted=TRUE, value.name="value", na.rm=TRUE, ...) is.data.table(x)
x | An R object. |
---|---|
keep.rownames | Default is |
key | Character vector of one or more column names which is passed to |
sorted | logical used in array method, default |
value.name | character scalar used in array method, default |
na.rm | logical used in array method, default |
... | Additional arguments to be passed to or from other methods. |
as.data.table
is a generic function with many methods, and other packages can supply further methods.
If a list
is supplied, each element is converted to a column in the data.table
with shorter elements recycled automatically. Similarly, each column of a matrix
is converted separately.
character
objects are not converted to factor
types unlike as.data.frame
.
If a data.frame
is supplied, all classes preceding "data.frame"
are stripped. Similarly, for data.table
as input, all classes preceding "data.table"
are stripped. as.data.table
methods returns a copy of original data. To modify by reference see setDT
and setDF
.
keep.rownames
argument can be used to preserve the (row)names attribute in the resulting data.table
.
data.table
, setDT
, setDF
, copy
, setkey
, J
, SJ
, CJ
, merge.data.table
, :=
, setalloccol
, truelength
, rbindlist
, setNumericRounding
, datatable-optimize
#> nn #> 1: 0.1 #> 2: 0.2 #> 3: 0.3 #> 4: 0.4as.data.table(nn, keep.rownames=TRUE)#> rn nn #> 1: a 0.1 #> 2: b 0.2 #> 3: c 0.3 #> 4: d 0.4as.data.table(nn, keep.rownames="rownames")#> rownames nn #> 1: a 0.1 #> 2: b 0.2 #> 3: c 0.3 #> 4: d 0.4#> cc #> 1: a #> 2: b #> 3: cas.data.table(cc, keep.rownames=TRUE)#> rn cc #> 1: X a #> 2: Y b #> 3: Z cas.data.table(cc, keep.rownames="rownames")#> rownames cc #> 1: X a #> 2: Y b #> 3: Z c#> c1 c2 #> 1: 1 3 #> 2: 2 4as.data.table(mm, keep.rownames=TRUE)#> rn c1 c2 #> 1: r1 1 3 #> 2: r2 2 4as.data.table(mm, keep.rownames="rownames")#> rownames c1 c2 #> 1: r1 1 3 #> 2: r2 2 4as.data.table(mm, key="c1")#> c1 c2 #> 1: 1 3 #> 2: 2 4#> a b #> 1: 1 3 #> 2: 2 4as.data.table(ll, keep.rownames=TRUE)#> a b #> 1: 1 3 #> 2: 2 4as.data.table(ll, keep.rownames="rownames")#> a b #> 1: 1 3 #> 2: 2 4#> x y #> 1: x 1 #> 2: x 3 #> 3: y 6 #> 4: y 1 #> 5: z 3 #> 6: z 6as.data.table(DF, keep.rownames=TRUE)#> rn x y #> 1: A x 1 #> 2: B x 3 #> 3: C y 6 #> 4: D y 1 #> 5: E z 3 #> 6: F z 6as.data.table(DF, keep.rownames="rownames")#> rownames x y #> 1: A x 1 #> 2: B x 3 #> 3: C y 6 #> 4: D y 1 #> 5: E z 3 #> 6: F z 6#> x y #> 1: x 1 #> 2: x 2 #> 3: y 3 #> 4: y 4 #> 5: z 5 #> 6: z 6as.data.table(DT, key='x')#> x y #> 1: x 1 #> 2: x 2 #> 3: y 3 #> 4: y 4 #> 5: z 5 #> 6: z 6#> V1 V2 V3 value #> 1: 1 1 3 -0.9358474 #> 2: 1 2 2 0.4681544 #> 3: 2 2 1 2.0650249 #> 4: 2 2 2 0.3629513 #> 5: 2 3 1 -1.8630115 #> 6: 2 3 2 1.8885049 #> 7: 2 3 3 1.6235489 #> 8: 3 1 2 -0.9140748 #> 9: 3 2 3 0.1764886 #> 10: 3 3 1 -0.5220125 #> 11: 3 3 2 -0.0974451 #> 12: 3 3 3 0.1120381