tune.wrapper.RdConvenience tuning wrapper functions, using tune.
tune.svm(x, y = NULL, data = NULL, degree = NULL, gamma = NULL, coef0 = NULL, cost = NULL, nu = NULL, class.weights = NULL, epsilon = NULL, ...) best.svm(x, tunecontrol = tune.control(), ...) tune.nnet(x, y = NULL, data = NULL, size = NULL, decay = NULL, trace = FALSE, tunecontrol = tune.control(nrepeat = 5), ...) best.nnet(x, tunecontrol = tune.control(nrepeat = 5), ...) tune.rpart(formula, data, na.action = na.omit, minsplit = NULL, minbucket = NULL, cp = NULL, maxcompete = NULL, maxsurrogate = NULL, usesurrogate = NULL, xval = NULL, surrogatestyle = NULL, maxdepth = NULL, predict.func = NULL, ...) best.rpart(formula, tunecontrol = tune.control(), ...) tune.randomForest(x, y = NULL, data = NULL, nodesize = NULL, mtry = NULL, ntree = NULL, ...) best.randomForest(x, tunecontrol = tune.control(), ...) tune.knn(x, y, k = NULL, l = NULL, ...)
| formula, x, y, data | formula and data arguments of function to be tuned. |
|---|---|
| predict.func | predicting function. |
| na.action | function handling missingness. |
| minsplit, minbucket, cp, maxcompete, maxsurrogate, usesurrogate, xval, surrogatestyle, maxdepth |
|
| degree, gamma, coef0, cost, nu, class.weights, epsilon |
|
| k, l |
|
| mtry, nodesize, ntree |
|
| size, decay, trace | parameters passed to
|
| tunecontrol | object of class |
| ... | Further parameters passed to |
tune.foo() returns a tuning object including the best parameter set obtained
by optimizing over the specified parameter vectors. best.foo()
directly returns the best model, i.e. the fit of a new model using the
optimal parameters found by tune.foo.
For examples, see the help page of tune().