Computes the Breslow estimator of the baseline hazard function for a proportional hazard regression model.
basehaz.gbm(t, delta, f.x, t.eval = NULL, smooth = FALSE, cumulative = TRUE)
| t | The survival times. |
|---|---|
| delta | The censoring indicator. |
| f.x | The predicted values of the regression model on the log hazard scale. |
| t.eval | Values at which the baseline hazard will be evaluated. |
| smooth | If |
| cumulative | If |
A vector of length equal to the length of t (or of length
t.eval if t.eval is not NULL) containing the baseline
hazard evaluated at t (or at t.eval if t.eval is not
NULL). If cumulative is set to TRUE then the returned
vector evaluates the cumulative hazard function at those values.
The proportional hazard model assumes h(t|x)=lambda(t)*exp(f(x)).
gbm can estimate the f(x) component via partial likelihood.
After estimating f(x), basehaz.gbm can compute the a nonparametric
estimate of lambda(t).
N. Breslow (1972). "Discussion of `Regression Models and Life-Tables' by D.R. Cox," Journal of the Royal Statistical Society, Series B, 34(2):216-217.
N. Breslow (1974). "Covariance analysis of censored survival data," Biometrics 30:89-99.