Print a summary of the results of cross-validation for a glmnet model.

# S3 method for cv.glmnet
print(x, digits = max(3, getOption("digits") - 3),
  ...)

Arguments

x

fitted 'cv.glmnet' object

digits

significant digits in printout

...

additional print arguments

Details

A summary of the cross-validated fit is produced, slightly different for a 'cv.relaxed' object than for a 'cv.glmnet' object. Note that a 'cv.relaxed' object inherits from class 'cv.glmnet', so by directly invoking print.cv.glmnet(object) will print the summary as if relax=TRUE had not been used.

References

Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent
https://arxiv.org/abs/1707.08692
Hastie, T., Tibshirani, Robert, Tibshirani, Ryan (2019) Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso

See also

glmnet, predict and coef methods.

Examples

x = matrix(rnorm(100 * 20), 100, 20) y = rnorm(100) fit1 = cv.glmnet(x, y) print(fit1)
#> #> Call: cv.glmnet(x = x, y = y) #> #> Measure: Mean-Squared Error #> #> Lambda Measure SE Nonzero #> min 0.2092 1.14 0.1223 0 #> 1se 0.2092 1.14 0.1223 0
fit1r = cv.glmnet(x, y, relax = TRUE) print(fit1r)
#> #> Call: cv.glmnet(x = x, y = y, relax = TRUE) #> #> Measure: Mean-Squared Error #> #> Gamma Lambda Measure SE Nonzero #> min 0.5 0.1583 1.116 0.06643 1 #> 1se 1.0 0.2092 1.127 0.06724 0
## print.cv.glmnet(fit1r) ## CHECK WITH TREVOR