print.cv.glmnet.Rd
Print a summary of the results of cross-validation for a glmnet model.
# S3 method for cv.glmnet print(x, digits = max(3, getOption("digits") - 3), ...)
x | fitted 'cv.glmnet' object |
---|---|
digits | significant digits in printout |
... | additional print arguments |
A summary of the cross-validated fit is produced, slightly different for a
'cv.relaxed' object than for a 'cv.glmnet' object. Note that a 'cv.relaxed'
object inherits from class 'cv.glmnet', so by directly invoking
print.cv.glmnet(object)
will print the summary as if
relax=TRUE
had not been used.
Friedman, J., Hastie, T. and Tibshirani, R. (2008)
Regularization Paths for Generalized Linear Models via Coordinate
Descent
https://arxiv.org/abs/1707.08692
Hastie, T.,
Tibshirani, Robert, Tibshirani, Ryan (2019) Extended Comparisons of
Best Subset Selection, Forward Stepwise Selection, and the Lasso
glmnet
, predict
and coef
methods.
#> #> Call: cv.glmnet(x = x, y = y) #> #> Measure: Mean-Squared Error #> #> Lambda Measure SE Nonzero #> min 0.2092 1.14 0.1223 0 #> 1se 0.2092 1.14 0.1223 0#> #> Call: cv.glmnet(x = x, y = y, relax = TRUE) #> #> Measure: Mean-Squared Error #> #> Gamma Lambda Measure SE Nonzero #> min 0.5 0.1583 1.116 0.06643 1 #> 1se 1.0 0.2092 1.127 0.06724 0## print.cv.glmnet(fit1r) ## CHECK WITH TREVOR