print.glmnet.Rd
Print a summary of the glmnet path at each step along the path.
# S3 method for glmnet print(x, digits = max(3, getOption("digits") - 3), ...)
x | fitted glmnet object |
---|---|
digits | significant digits in printout |
... | additional print arguments |
The matrix above is silently returned
The call that produced the object x
is printed, followed by a
three-column matrix with columns Df
, %Dev
and Lambda
.
The Df
column is the number of nonzero coefficients (Df is a
reasonable name only for lasso fits). %Dev
is the percent deviance
explained (relative to the null deviance). In the case of a 'relaxed' fit,
an additional column is inserted, %Dev R
which gives the percent
deviance explained by the relaxed model. For a "bigGlm" model, a simpler
summary is printed.
Friedman, J., Hastie, T. and Tibshirani, R. (2008). Regularization Paths for Generalized Linear Models via Coordinate Descent
glmnet
, predict
and coef
methods.
#> #> Call: glmnet(x = x, y = y) #> #> Df %Dev Lambda #> 1 0 0.00000 0.209400 #> 2 2 0.01238 0.190800 #> 3 3 0.02575 0.173800 #> 4 3 0.03886 0.158400 #> 5 4 0.05062 0.144300 #> 6 6 0.06705 0.131500 #> 7 8 0.08540 0.119800 #> 8 8 0.10250 0.109200 #> 9 8 0.11670 0.099460 #> 10 8 0.12850 0.090630 #> 11 8 0.13830 0.082580 #> 12 8 0.14640 0.075240 #> 13 8 0.15320 0.068560 #> 14 9 0.15970 0.062470 #> 15 10 0.16530 0.056920 #> 16 13 0.17080 0.051860 #> 17 13 0.17620 0.047250 #> 18 13 0.18080 0.043060 #> 19 13 0.18460 0.039230 #> 20 14 0.18770 0.035750 #> 21 16 0.19090 0.032570 #> 22 16 0.19360 0.029680 #> 23 16 0.19580 0.027040 #> 24 16 0.19770 0.024640 #> 25 16 0.19920 0.022450 #> 26 17 0.20070 0.020460 #> 27 18 0.20200 0.018640 #> 28 18 0.20320 0.016980 #> 29 18 0.20410 0.015470 #> 30 18 0.20490 0.014100 #> 31 19 0.20560 0.012850 #> 32 19 0.20620 0.011710 #> 33 19 0.20670 0.010670 #> 34 19 0.20710 0.009718 #> 35 19 0.20740 0.008854 #> 36 19 0.20770 0.008068 #> 37 19 0.20790 0.007351 #> 38 19 0.20810 0.006698 #> 39 19 0.20830 0.006103 #> 40 19 0.20840 0.005561 #> 41 19 0.20860 0.005067 #> 42 19 0.20860 0.004617 #> 43 19 0.20870 0.004207 #> 44 19 0.20880 0.003833 #> 45 19 0.20880 0.003492 #> 46 19 0.20890 0.003182 #> 47 19 0.20890 0.002899 #> 48 19 0.20890 0.002642 #> 49 20 0.20900 0.002407 #> 50 20 0.20900 0.002193 #> 51 20 0.20900 0.001998 #> 52 20 0.20900 0.001821 #> 53 20 0.20900 0.001659 #> 54 20 0.20910 0.001512 #> 55 20 0.20910 0.001377 #> 56 20 0.20910 0.001255 #> 57 20 0.20910 0.001144 #> 58 20 0.20910 0.001042 #> 59 20 0.20910 0.000949 #> 60 20 0.20910 0.000865 #> 61 20 0.20910 0.000788 #> 62 20 0.20910 0.000718 #> 63 20 0.20910 0.000654 #> 64 20 0.20910 0.000596