For each slice of an array, apply function then combine results into a data frame.
adply(.data, .margins, .fun = NULL, ..., .expand = TRUE, .progress = "none", .inform = FALSE, .parallel = FALSE, .paropts = NULL, .id = NA)
.data | matrix, array or data frame to be processed |
---|---|
.margins | a vector giving the subscripts to split up |
.fun | function to apply to each piece |
... | other arguments passed on to |
.expand | if |
.progress | name of the progress bar to use, see
|
.inform | produce informative error messages? This is turned off by default because it substantially slows processing speed, but is very useful for debugging |
.parallel | if |
.paropts | a list of additional options passed into
the |
.id | name(s) of the index column(s).
Pass |
A data frame, as described in the output section.
This function splits matrices, arrays and data frames by dimensions
The most unambiguous behaviour is achieved when .fun
returns a
data frame - in that case pieces will be combined with
rbind.fill
. If .fun
returns an atomic vector of
fixed length, it will be rbind
ed together and converted to a data
frame. Any other values will result in an error.
If there are no results, then this function will return a data
frame with zero rows and columns (data.frame()
).
Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1-29. http://www.jstatsoft.org/v40/i01/.