Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for aareg tidy(x, ...)
x | An |
---|---|
... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble with one row for each coefficient and columns:
name of coefficient
estimate of the slope
test statistic for coefficient
standard error of statistic
robust version of standard error estimate (only when
x
was called with dfbeta = TRUE
)
z score
p-value
Other aareg tidiers: glance.aareg
Other survival tidiers: augment.coxph
,
augment.survreg
,
glance.aareg
, glance.cch
,
glance.coxph
, glance.pyears
,
glance.survdiff
,
glance.survexp
,
glance.survfit
,
glance.survreg
, tidy.cch
,
tidy.coxph
, tidy.pyears
,
tidy.survdiff
, tidy.survexp
,
tidy.survfit
, tidy.survreg
library(survival) afit <- aareg( Surv(time, status) ~ age + sex + ph.ecog, data = lung, dfbeta = TRUE ) tidy(afit)#> # A tibble: 4 x 7 #> term estimate statistic std.error robust.se statistic.z p.value #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 Intercept 0.00505 0.00587 0.00474 0.00477 1.23 0.219 #> 2 age 0.0000401 0.0000715 0.0000723 0.0000700 1.02 0.307 #> 3 sex -0.00316 -0.00403 0.00122 0.00123 -3.28 0.00103 #> 4 ph.ecog 0.00301 0.00367 0.00102 0.00102 3.62 0.000299