Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for survexp tidy(x, ...)
x | An |
---|---|
... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble with one row for each time point and columns:
time point
estimated survival
number of individuals at risk
Other survexp tidiers: glance.survexp
Other survival tidiers: augment.coxph
,
augment.survreg
,
glance.aareg
, glance.cch
,
glance.coxph
, glance.pyears
,
glance.survdiff
,
glance.survexp
,
glance.survfit
,
glance.survreg
, tidy.aareg
,
tidy.cch
, tidy.coxph
,
tidy.pyears
, tidy.survdiff
,
tidy.survfit
, tidy.survreg
library(survival) sexpfit <- survexp( futime ~ 1, rmap = list( sex = "male", year = accept.dt, age = (accept.dt - birth.dt) ), method = 'conditional', data = jasa ) tidy(sexpfit)#> # A tibble: 88 x 3 #> time estimate n.risk #> <dbl> <dbl> <int> #> 1 0 1 102 #> 2 1 1.00 102 #> 3 2 1.00 99 #> 4 4 1.00 96 #> 5 5 1.00 94 #> 6 7 1.00 92 #> 7 8 1.00 91 #> 8 10 1.00 90 #> 9 11 1.00 89 #> 10 15 1.00 88 #> # … with 78 more rowsglance(sexpfit)#> # A tibble: 1 x 3 #> n.max n.start timepoints #> <int> <int> <int> #> 1 102 102 88