Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for survdiff tidy(x, ...)
x | An |
---|---|
... | Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in |
A tibble::tibble with one row for each time point and columns:
The initial columns correspond to the grouping factors on the right hand side of the model formula.
weighted observed number of events in each group
weighted expected number of events in each group
number of subjects in each group
Other survdiff tidiers: glance.survdiff
Other survival tidiers: augment.coxph
,
augment.survreg
,
glance.aareg
, glance.cch
,
glance.coxph
, glance.pyears
,
glance.survdiff
,
glance.survexp
,
glance.survfit
,
glance.survreg
, tidy.aareg
,
tidy.cch
, tidy.coxph
,
tidy.pyears
, tidy.survexp
,
tidy.survfit
, tidy.survreg
library(survival) s <- survdiff( Surv(time, status) ~ pat.karno + strata(inst), data = lung ) tidy(s)#> # A tibble: 8 x 4 #> pat.karno N obs exp #> <chr> <dbl> <dbl> <dbl> #> 1 30 2 1 0.692 #> 2 40 2 1 1.10 #> 3 50 4 4 1.17 #> 4 60 30 27 16.3 #> 5 70 41 31 26.4 #> 6 80 50 38 41.9 #> 7 90 60 38 47.2 #> 8 100 35 21 26.2glance(s)#> # A tibble: 1 x 3 #> statistic df p.value #> <dbl> <dbl> <dbl> #> 1 21.4 7 0.00326