All functions

MDSplot()

Multi-dimensional Scaling Plot of Proximity matrix from randomForest

classCenter()

Prototypes of groups.

combine()

Combine Ensembles of Trees

getTree()

Extract a single tree from a forest.

grow(<randomForest>)

Add trees to an ensemble

importance(<randomForest>)

Extract variable importance measure

imports85

The Automobile Data

margin(<randomForest>) margin(<default>) plot(<margin>)

Margins of randomForest Classifier

na.roughfix()

Rough Imputation of Missing Values

outlier(<default>) outlier(<randomForest>)

Compute outlying measures

partialPlot(<randomForest>)

Partial dependence plot

plot(<randomForest>)

Plot method for randomForest objects

predict(<randomForest>)

predict method for random forest objects

randomForest(<formula>) randomForest(<default>) print(<randomForest>)

Classification and Regression with Random Forest

rfImpute(<default>) rfImpute(<formula>)

Missing Value Imputations by randomForest

rfNews()

Show the NEWS file

rfcv()

Random Forest Cross-Valdidation for feature selection

treesize()

Size of trees in an ensemble

tuneRF()

Tune randomForest for the optimal mtry parameter

varImpPlot()

Variable Importance Plot

varUsed()

Variables used in a random forest